

Addition

Stage 1

- Children understand the concept of addition as the combining of 2 or more groups.
- They count using objects starting at the largest number

- They use the + and = symbols correctly,
 understanding that: 2 + 3 = 5 and 5 = 2 + 3
- Extend to counting up in ones on a number line: Usings Numicon to add.

 They begin to count using dienes equipment (ones and tens)

Stage 4

- Children should now use column addition of 2,
 3 and 4 digit numbers using this expanded method:

 (No corrying)
- Place value counters can be used to model this

Stage 2

 Children add 2 digit numbers by counting on in tens then ones on a number line:

$$46 + 33$$

$$= 46 + 10 + 10 + 10 + 1 + 1 + 1$$

$$= 79$$

$$46 - 56 - 66 - 76 - 77 - 78 - 79$$

 Children use a 100 square to begin to add two digit numbers by counting on in tens then ones

Stage 5

 This leads to the short written method of addition in columns using 'carrying'

Recommended by the end or year 4

Stage 3

• Children use an empty number line to extend partitioning adding the tens then the ones

Children must have a good understanding of place value and partitioning

Recommended by the end of year 2

Stage 6

The same method is applied to addition of decimals

A Primary Street

Subtraction

Stage 1

- Children understand the concept of subtraction as the taking a number away from another.
- They take away using objects

 They use the - and = symbols correctly, understanding that:

$$6-2=4$$
 and $4=6-2$

 Extend to counting backwards in ones on a number line:

Stage 2

Children begin to find 'the difference'

 Children use a 100 square to subtract a two digit number by counting back in tens then ones

Stage 3

- Continue to encourage use of number line to find the difference by counting from smaller number to the larger one
- Progress to vertical subtraction without decomposition.
- Dienes equipment can be used to model this

They visualise differences using multilink/Numicon

Stage 4

- Children should now learn vertical subtraction with decomposition
- Dienes equipment can be used to model the method of exchanging

Stage 5
Subtracting from numbers containing zeroes such as 300

can be done by subtraction with decomposition but children may find using a number line more straight forward. See both methods below:

Recommended by the end of year 3

Stage 6

• The same method is applied to subtraction of decimals

Recommended by the end of year 4

Multiplication

Stage 1

 Children begin to understand the concept of multiplication as grouping and 'lots of' and recognise the X symbol

- They group objects and begin to understand 3 lots of 2 $3 \times 2 = 6$
- They use X and = symbols and understand that

$$3 \times 2 = 6$$

$$6 = 3 \times 2$$

$$2 \times 3 = 6$$

$$6 = 2 \times 3$$

· Numicon to visualise

Stage 4

- Children should know all tables to 12x12
- Children use a formal written method of short multiplication

354 x 6 which condenses to:

354

300

+ <u>1</u>₁800 2 124 354 × 36 3

Recommended by the end of year 4

Stage 2

 Children describe multiplication as an array and understand that it can be worked out in any order:

• They use repeated addition on a number line

Recommended by the end of year 2

Stage 5

 Children progress to using formal long multiplication to multiply by a 2 digit number 124 x 26

Recommended by the end of year 5

Stage 3

 Children partition a number in order to multipy each part by a single digit:

$$50 \times 6 = 300$$

<u>324</u>

Children must be mastering their knowledge and use of 2x 3x 4x 5x 8x 10x table facts

Recommended by the end of year 3

Stage 6

Children practice and master written methods continuing to decimals:

Stage 1

 Children begin to understand the concept of division as sharing and grouping and recognise the ÷ symbol

• They group objects and begin to understand

6 shared equally by 3 = 2 $6 \div 3 = 2$

• They use the ÷ and = symbols

Stage 2

• Children use arrays to group or divide numbers

 They use repeated addition on a number line to reach the number

Stage 3

- Children use short division to divide numbers
- Place Value counters can be used to model this method initially

Recommended by the end of year 2

Stage 4

 Children use a formal written method of short division to divide 3 digit numbers by 1 digit

• They then move on to finding remainders

Recommended by the end of year 4

Stage 5

Children progress to using formal long division to divide by a 2 digit number

Video

Recommended by the end of year 3

Stage 6

 Children practice and master written methods continuing to decimals: